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The project titled “Recurrent Rhapsody: A Prompt-Driven Song Generation Pipeline” is a
Recurrent Neural Network (RNN) based three-stage architecture for music generation. The
project is aimed to produce an enhanced intelligence system by combining several machine
learning algorithms such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),
and sentence-BERT embeddings. At each of the three stages, models performing specific tasks
are trained on separate but interlinked datasets and the results produced are compiled and
presented as a coherent desired output. The experiments carried out during the project
development culminate in a sequential pipeline that, given a textual prompt, generates a
complimentary song- lyrics combination.
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Methodology

The first task performed during the development of the project was the
identification of the data sources that will be used to train the model. For the
first component, which at its core is a text generation model, a song-lyrics
dataset had to be utilized. The data was sourced from a Kaggle repository
that contained songs scraped from 79 genres from a Brazilian music
website called Vagalume. A snippet of this dataset is shown below –

the lyric entries in the dataset. These embeddings were then saved as a
pickle file. With these embeddings at hand, given a text, the same pretrained
model can be used to generate embeddings for this text. Following this, the
cosine similarity between each of the embeddings in our saved file and the
new embedding is calculated, and the saved lyric embedding for which this
score is the highest is identified as the source of the priming sequence to be
fed into the third stage of the pipeline – the backing track generation model.

Given the generated lyrics and a complementary priming sequence in the
available MIDI dataset, the next step is to create an RNN model that is
capable of taking in this priming sequence and generating a completely new
backing track. This was achieved in the third stage of the pipeline. The model
used in this component is not a vanilla RNN but rather an advanced version
of it called GRU or the Gated Recurrent Unit . The model is made up of four
layers in total and the summary is illustrated in the figure below -

Results
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Introduction

Recurrent Rhapsody is a three-model pipeline that can, given a text prompt,
output a unique lyrics-song combination. A central assumption that is
followed through in the project is that in a generated song, the tone of the
lyrics matches that of the backing track. In order to achieve the desired
results, three separate models were trained and then interlinked in such a
way so that the output of one of the model feeds the input of the next. A
diagrammatic representation of the architecture of the pipeline is shown
below –

The first part, an LSTM model generates lyrics of a song, given a prompt.
This song is then fed into the second stage, sentence-BERT embedding and
cosine similarity-based algorithm, where a similarity mapping is done to
obtain the song with the most similar lyrics to the one generated. The MIDI
track for this resultant song is then fed into a neural network model as the
priming sequence to generate a new backing track. The lyrics along with this
track are then output as the results of the pipeline ready to be combined.
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Once each of the three models was trained and prepared separately, the
task was to combine and pipeline these components together sequentially
so that the desired output could be produced. In order to perform this task a
function was created that references and loads each of the pretrained
model and makes sure the appropriate operations are being carried out so
that the output of each t-1th component is compatible with the input
dimensions of each tth component.
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Cleaning of this dataset was performed, and the lyrics were tokenized and 
then converted into n-gram sequences for the text generation task. For the 
2nd component of the pipeline, the MIDI tracks to be used in the final stage

had to be referenced and the IDs for each of these tracks was the identified.
Using these IDs, the Musixmatch API for lyrics extraction, the langdetect
library for language detection, and some metadata files found in the
repository of the lakh MIDI dataset (the parent dataset of the lakh pianoroll
dataset – component 3’s data) a new data file was generated, and this new
data file served as the basis for component 2 of the pipeline. The data for
component 3 came from the lakh pianoroll repository that contains MIDI
tracks for multiple different songs. The LPD-5 cleansed version of this
dataset was used to train the model in component 3.

As for the models themselves, the component 1 model is a bidirectional
LSTM model made up of 4 layers as shown below –

The first layer is the embedding layer that maps the input n-gram sequences
into dense vectors that are then fed into the Bidirectional LSTM layer that is
made up of 250 units. The third layer is the dropout layer that helps prevent
overfitting and maintain generalization. The last layer of the model is the
dense layer which has a SoftMax activation function that outputs the
probabilities of each word in the vocabulary to be the next word in the
sequence. This model was then compiled using the categorical cross entropy
loss function and Adam optimizer. The training process was 40 epochs long
and the batch size was 32. The model achieved a training accuracy of 74.36%
and the accuracy plot for the model is shown below -

The second component of the pipeline is responsible for the identification of
the priming sequence required for backing track generation by the third
component’s Recurrent Neural Network (RNN). This operation is performed
so that music complementary to the lyrics generated by component 1 is
produced by the pipeline. After creating the new relevant datafile for this
component as described in the preceding paragraphs, we use the sentence
transformer library which is built on top of Huggingface’s transformers
library to load a pretrained BERT based model namely the 'bert-base-nli-
mean-tokens', i.e., the Sentence-BERT, to generate embeddings for each of

The first is the embedding layer which takes in the integer list of notes and
converts it into a dense vectors. These are then fed into the two layers of the
gated recurrent unit and the output of the gated recurrent unit then decoded
to produce a probability distribution of over the possible notes.

The loss function used during training is the cross entropy loss and the
SoftMax activation function is used during evaluation to pick the note with
the highest probability from amongst the produced distribution. A plot of the
observed loss over the training epochs is shown above. The model trained
for 40 epochs and the training terminated when the observable loss value
was about 0.05.

The entire project was created using Python 3.10.11 and its various libraries.
The first component which is an LSTM model for text sequence i.e. lyrics
prediction was built using tenserflow.keras. The second component used to
obtain a complementary priming sequence was built using a pretrained
sentence-BERT model from huggingface interfaced using the sentence
tokenizer library. The third component which was a Gated Recurrent Unit
based model was built using PyTorch.

The first and second components of the model were trained in the Google
Collaboratory environment using the NVIDIA Tesla T4 GPU. The third
component was trained using Jupyter on the local machine using a 1.1 GHz
Quad-Core Intel Core i5 processor and no dedicated GPU.

Conclusion

The image above is used to illustrate a sample output that is produced
when a text prompt – “I hate my life” is given to the the Recurrent
Rhapsody pipeline.

The aim of this project was to develop a pipeline that utilizes the power of
neural networks to generate a new song based on a given text prompt. This
was achieved by combining several machine learning algorithms, including
LSTM, GRU, and Sentence-BERT embeddings. However, the pipeline's
current implementation only utilizes a subset of the available data due to
training infrastructure limitations, and incorporating more data could lead
to even better performance. One way to achieve this would be to add more
training examples for the LSTM and similarity mapping algorithm in the first
two components. In the third component, integrating tracks for multiple
instruments and using VAE-based neural networks for more accurate next
note predictions could improve performance.

Although there is room for improvement in the project's output quality, the
current level of performance is satisfactory. Overall, this pipeline presents a
novel approach to music generation that has exciting real-life applications


