

London Tube Navigation Expert System in CLIPS

PART - 3

Team 4

Chadha, Harshita

Sanghvi, Prima

Tadikonda, Naga Sai Bhavya

Department of Computer Science

George Washington University

Professor Stephen Kaisler

Department of Computer Science

George Washington University

Submitted on - December 16, 2023

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

1

TABLE OF CONTENTS

1. Introduction ..2

2. Instructions for Running the Expert System ..3

3. Expert System Usage Examples ..4

4. Facts, Templates and Data Collection .. 13

5.1. Data Collection .. 13

5.2. Revisions in Templates and Facts in Part-3 ... 17

5.3. Templates in Clips ... 18

5.4. Facts in Clips.. 20

5. Design and Implementation of CLIPS Rules .. 23

6. Supporting CLIPS Functions .. 29

7. Conclusions ... 31

8. References ... 32

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

2

1. Introduction

This report serves to provide an overview of part 3 of the development of a London Tube

Navigation Expert System that provides travelers information about the complex London

underground network. Our goals in this part of project development were to modify the expert

system to incorporate changes according to provided comments after part-2 submission as well as

to modify the system to deal with station closures (the main goal for part-3). Further, we also

worked on enhancing our option-based interface to allows users to interact with the expert system

more easily and use the information contained in the knowledge base to plan their next exciting

outcome in London!

This report is made up of eight main sections. The first and present section serves as an introduction

to the development cycle in part-3 and provides a brief overview of the work done. Section 2 of

this document summarizes the steps that are to be followed to initialize and run the expert system.

Sections 4, 5, and 6 detail the templates, facts, rules, and functions that work together to make the

system function. Lastly, conclusions and references for all external sources are provided in sections

7 through 8.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

3

2. Instructions for Running the Expert System

In the file exchange for group 4 on blackboard, 2 items have been submitted. The first is a zip

folder titled “Part3_Group4_System.zip”. This folder contains separate txt source files for rules,

functions, facts, templates, and loading. Within this folder, the file "LoadingFiles.txt" contains a

loader function, (loading), that loads all the remaining files and initializes the system. The second

submitted item is the present document titled “Part3_Group4_Report.docx”.

To run the system, the following steps should be followed -

1. Download the and unzip the folder “Part3_Group4_System.zip” from Group-4’s file exchange

on blackboard.

2. In the CLIPS console, switch the directory to the unzipped folder “Part3_Group4_System”.

3. In the CLIPS console enter the following command -

(load "LoadingFiles.txt")

4.In the CLIPS console enter the following command to invoke the main loader function.

(loading)

5.Enter the following commands in the CLIPS Console

(reset)

(run)

Following the above steps initializes the system and a menu driven, prompt like expert system is

loaded which can be interacted with to plan trips, get more information on attractions in London,

etc.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

4

3. Expert System Usage Examples

In this section we provide an overview of the capabilities of our London Tube Navigation System

and demonstrate some examples of usage. When the commands illustrated in section 2 above are

executed, the system is initialized and ready for interaction. This initial interface is shown in the

figure below -

Figure 1: Initial User Interface for The London Tube Expert System

The initial interface offers the user two choices - Find Route and Get Information. When the first

option, Find Route, is selected, the user is prompted to enter the name of the start and the ending

station. This is shown in the figure below -

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

5

Figure 2: Calculating Route Using the Expert System

As can be seen, entering the name of the stations generates the route for the trip along with the

cost of making the trip. To calculate the route, a dynamic fact is initialized to capture the user

input. Following this, if the route to be calculated happens to be for stations on the same line, a

different rule executes simply outputting the path.

If in case the stations happen to be on different lines, a separate rule executes and uses a semi-bfs

(breadth first search) based approach to obtain a set of possible routes. Following this, based on

some optimality parameters routes are filtered to obtain the ones with the minimal number of

switches and intermediate stations involved. The route calculation methodology is defined in

further detail in section 4 below. If there exist multiple optimal routes of travel for two entered

stations, all of them are output after filtering rules are executed. This is shown in the case of the

below illustrated example -

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

6

Figure 3: Existence Of Multiple Optimal Routes

In case, the user enters stations that do not exist on the metro line or in case the user makes a

spelling mistake, an error rule runs, and a message is displayed. This is shown below -

Figure 4: Error Message For Spelling Errors And Non-Existent Stations

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

7

Station Closure

For part 3, some stations have closure and, in that case, the expert system gives alternate routes.

Below are few examples of routes with closed stations:

● Euston to Hammersmith

Figure 5: Route options for Euston to Hammersmith

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

8

● Aldgate East to Bond Street

Figure 6: Route options for Aldgate East to Bond Street

● Moorgate to Victoria

Figure 7: Route options for Moorgate to Victoria

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

9

Next, in case the user does not want to calculate the route but wants information on attractions,

line details, zone details or nearest station near some attraction in and around London itself, the

second option, Get Information, can be used. Selecting this option produces another menu which

shows the user the different types of actions they can perform to get information from the system.

This is shown in the figure below -

Figure 8: Option Two - Finding Information on Attractions

The first sub-option, when selected, shows the list of few famous attractions to the user, and

prompts to enter the name of an attraction and based on fact matches according to defined rules,

outputs the nearest metro stations to the attraction and the lines on which these metro stations are.

This is shown in the example in the figure below-

Figure 9: Getting Location Information about London Attractions

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

10

The second option of the get information sub-menu also shows the list of few famous attractions

to the user and prompts the user to enter the name of the attraction and outputs a brief description

of the entered attraction. This is shown in the figure below -

Figure 10: Getting Attraction’s Description from Name

The third option, in the sub-menu allows the user to enter the name of a train station on the London

Tube System and in return outputs a list of all attractions near this station in a list format arranged

in increasing order of distance within an acceptable radius. An example of this is shown in the

figure below -

Figure 11: Getting Nearest Attractions to a Given Station

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

11

The fourth option, in the sub-menu, shows the user the list of available lines and allows the user

to enter the line name or line color they want information on and in return outputs a list of all

stations on that specific line and the list of all transfer stations on that line. An example of this is

shown in the figure below -

Figure 12: Getting Station information on Given Lines

Finally, when the user selects the fifth option it displays the list of all stations and lines in zone 1,

zone 2 and zone 1/2. An example of this is shown in the figure below -

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

12

Figure 13: Getting station and line information on zone.

Thus, the created London Tube navigation system offers a menu driven user interface that allows

the user to interact with the knowledge base of the expert system and obtain useful functionality

from it. While this section served to provide examples of usage, in the following sections we

describe the process of collecting data and crafting facts, rules and functions to obtain the final

system.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

13

4. Facts, Templates and Data Collection

4.1. Data Collection

This section serves to briefly describe the identified entities that would form the knowledge base

for our expert system and the data collection process to create facts on top of these entities. After

careful and detailed analysis of the underground London tube system in the phase one of exert

system development, we identified 4 key entity categories to help us model our expert system and

perform key operations such as route and fare calculations. These were - station, lines, attractions

and fares.

The station entity corresponds to information about the 121 stations of the London tube system in

zone 1 and 2 that we are considering for our expert system development. The template for this

entity has slots such as station name, line, zone, etc. In order to collect the data to populate the

facts for this template, a list of the 121 stations under consideration was obtained from an online

repository [1] by using python programming language to perform web scraping. Following this,

the Transport for London Unified API or the TfL API [2] was used to collect additional information

such as the lines that pass through a station, the neighbors of a tube station, etc. Figure 1 below

illustrates a spreadsheet containing the data to populate facts for the station template -

Figure 14: Data to create facts for stations template

For the attractions entity, the template contains slots such as attraction name, description, etc. To

create facts for the entity’s template, a list of the 42 most relevant tourist attractions was obtained

and then the Geocoding Google Maps API [3] was used to find the nearest relevant tube station

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

14

for the attraction. The line information for the identified station was obtained by cross referencing

already collected stations data as described at the beginning of this section. Python programming

language in the Jupyter notebook environment was used to achieve this. Furthermore, to obtain the

description for the attractions, the Google Places API [4] was used. Figure 2 below illustrates a

spreadsheet containing the data collected using the procedures to populate the facts –

Figure 15: Data to create facts for attractions template.

Thirdly, for the fare entity, the template will be populated with four facts only because we are

considering only 2 zones for our expert system. The fares information included in the fact file is

obtained from the fare table included in the project description document. Figure 3 below

illustrates the spreadsheet containing fact data for fare template -

Figure 16: Data to create facts for attractions template.

For the final lines entity, the created template has information such as the line name, the start and

ending stations, the list of all stations, etc. This information was collected using the Transport for

London Unified API or the TfL API [2] and a snapshot of the collected facts is shown in figure 4

below -

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

15

Figure 17: Data to create facts for lines template.

The entities described above were identified during phase one of project development. However,

after detailed requirements analysis, some changes and modifications had to be made to the

templates and entities. One of the major ones was the removal of the fares template and addition

of the switch template described in the following paragraph. More details on changes made to facts

and templates in the current phase 2 of project development are presented in section 4.2 below.

One of the key entities for our system is the switch template and the corresponding facts. The

switch template, which is described in detail in the following sections, was obtained from the data

in figure 9. The stations which fell under the category of transfer stations were extracted from this

data along with the lines that could be switched at them. Following this, for each of the lines, the

other lines that could be reached from them via switching stations were computed using a modified

bfs (breadth-first search) algorithm. The pseudocode of this function is provided below -

 function bfs_find_alternative_paths(graph, start, end, max_switches=4, max_alternatives=3):

 queue = create_empty_deque()

 visited = create_empty_set()

 alternatives = create_empty_list()

 # Enqueue the starting node with initial paths and switches

 queue.enqueue((start, [], [start], 0))

 # Explore the graph using BFS

 while queue is not empty:

 node, edge_path, node_path, switches = queue.dequeue()

 # Check if the destination node is reached

 if node == end:

 alternatives.append((edge_path, node_path))

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

16

 # Check if the maximum number of alternatives is reached

 if length(alternatives) >= max_alternatives:

 return alternatives

 # Mark the node as visited

 visited.add(node)

 # Explore neighbors

 for neighbor, edge_name in graph[node].items():

 if neighbor not in visited and switches < max_switches:

 new_edge_path = copy(edge_path)

 new_node_path = copy(node_path)

 new_switches = switches + 1

 # Update paths and enqueue the neighbor

 new_edge_path.append(edge_name)

 new_node_path.append(neighbor)

 queue.enqueue((neighbor, new_edge_path, new_node_path, new_switches))

 return alternatives

Instead of using bfs to calculate the route between stations on the fly, the possible switches between

lines are anticipated, recorded, and fed into the knowledge base as facts using the above approach.

This information was generated using the aforementioned data and python programming language

and the entire code for this can be found in the iPython Notebook here [8]. The figure below

illustrates a graph of switches and connections between the lines of the London Tube that was

traversed to get the switch stations data.

https://colab.research.google.com/drive/1a3qAhu9FnyhL9GJln70Z37V9KBcY0Cxz#scrollTo=-pP8LE1BWJT5

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

17

Figure 18: Data to create facts for lines template

Using the methods described in this section, suitable data was gathered and was structured into

templates and facts to create the knowledge base of our expert system. The following sections

provide more detail on this process as well as the modifications and changes made from phase one.

4.2. Revisions in Templates and Facts in Part-3

Templates are a fundamental concept in Clips and are used to define the structure of facts. They

serve as a blueprint for creating instances of facts. Previously our system had the following

templates: Station, Fare, Line, and Attractions. As we proceeded further with developing a rule-

based system for getting routes and attraction information, the Station template was changed to

store a list of inbound and outbound stations. Fare and Line facts were not needed so instead added

a fact for Switch station and AttractionInfo which will be described further. Finally, the system

has the following templates: Station, Switch, Attractions, and AttractionsInfo. These are described

in the sections that follow.

For part 3, we have added LineDetails Facts and Templates to display the list of all stations and

all transfer stations on a given line.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

18

4.3. Templates in Clips

Below is the list of templates created:

● Station: This template is designed to capture various attributes of a station like:

○ Name: This slot is used to store the name of the station, which is of type STRING,

allowing for text-based representation.

○ Line: This is a multislot, which means it can hold multiple values. It is used to store the

names of the subway lines that enroute this station.

○ Zone: This is also a multislot and it stores integer values indicating the zone the station

it lies in.

○ Stations Before: The "before" is a multislot for storing the list of all the stations before

the current station

○ Stations After: The "after" slot is a multislot for storing the list of all the stations after

the current station

○ TransferStation: This slot is also of type string and it stores yes or no depending on

whether the station is transfer station or not.

Figure 19: Creating a template for Station entity

● Attractions: This template is designed to capture various attributes of line attractions:

○ Attraction name: This slot used to store the names of attractions in zone 1 and zone 2,

which is of type STRING.

○ Description: This slot used to store the description of each attraction , which is of type

STRING.

○ Station name: This multi slot used to store the names of stations nearest to this

attraction, which is of type STRING.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

19

○ Line: This multi slot used to store the names of lines that are connected to the nearest

station from this attraction, which is of type STRING.

Figure 20: Creating a template for Attractions entity

● AttractionInfo: This template is designed to capture list of attractions against each station:

○ Name: This slot is used to store the name of the station, which is of type STRING,

allowing for text-based representation.

○ Attraction List: This multi slot used to store a list of attractions near the given

station.

Figure 21: Creating template for Attraction List against Stations

● LineDetails: This template is designed to capture list of all station on a particular line:

○ Name: This slot is used to store the name of the line, which is of type STRING,

allowing for text-based representation.

○ Line-color: This slot is used to store the color of the line, which is of type STRING,

allowing for text-based representation.

○ Station List: This multi slot is used to store a list of all stations on the given line.

○ Switch Station: This multi slot is used to store a list of all transfer stations on the

given line.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

20

Figure 22: Creating template for Line Details

4.4. Facts in Clips

Facts are instances of templates. Facts are created by asserting them into Clips' working memory

using the assert command, followed by the template name and values for each slot. They can also

be defined using deffacts to define and initialize facts within the CLIPS working memory. They

provide a convenient way to assert predefined sets of facts. Below are attached screenshots for

instance of each facts created in our system:

● Station Facts: They are structured in “station-facts” block to represent name of each station,

lines that enroute each station, zone it lies in, the neighboring station this station and if its a

transfer station or not.

Figure 23: Adding facts for Station template

● Attractions Facts: They are structured in "All-Attractions" deffacts block to represent

attraction name, its description, the nearest station to that attraction and lines that enroute the

nearest station, for each attraction in zone 1 & zone 2 based on the template defined.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

21

Figure 24: Adding facts for Attraction template

● AttractionInfo Facts: They are structured in "attraction-facts" deffacts block to represent

station name and list of all attractions near it, for each station in zone 1 & zone 2 based on the

template defined.

 Figure 25: Adding facts for Attraction template

● LineDetails Facts: They are structured in "lineDetails-facts" deffacts block to represent line

name, line color, list of all stations on that particular line and list of all switch stations on it,

for each line in zone 1 & zone 2 based on the template defined.

Figure 26: Adding facts for Line Details template

Below is the diagram to demonstrate the relation between facts and templates -

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

22

Figure 27: Diagrammatic Illustration of Templates and Example Facts

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

23

5. Design and Implementation of CLIPS Rules

CLIPS is a system development tool used to create rule-based systems. Rules are structured with

condition and the action part. The action part contains the tasks to be executed when the condition

is satisfied. The condition part of a rule uses pattern matching to identify specific patterns in the

data or facts already stored within the system. In our system following rules are defined to get

routes and information on attractions in London. The first rule fired is for taking user input based

on the choice given.

● Input rule: It prompts the user with a multiple choice on whether he/she wants information

on station or route between start and destination station. According to the user entered choice

it fires another. Below is the screenshot for the same.

Figure 28: User Input Rule

Next, if the user selects choice one the route rule is fired -

● Routes: This rule takes start station and end station as input and calculates all the possible

routes between them. First it checks in the station facts if both the entered stations are on the

same line and returns the list of stations in order from start to end. The screenshot of that rule

is as below:

Figure 29: Rule for stations on same line

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

24

Further, if they are not on the same line it fires the diff_line rule to assert new facts containing all

possible routes based on the stations and switch facts. The code screen shot for same is as below:

Figure 30: Rule for stations on different lines

Now once these facts are asserted into the system get_complete_route will calculate the optimal

route and return it to the user. In order to calculate the optimal route it will retract all the facts that

have a minimum number of stations and eliminate the rest. Now if there is more than one route

with minimum stations; in that case it will check for the number of line switches and select the one

with minimum switches. And in the end if there are again more than one possible route it will

prompt all the possible options. Instead of going through standard BFS we choose this method for

optimization to handle the features of phase 3. Below is the screenshot of the same:

Figure 31: Main Rule to Calculate Routes

In addition to these, find-min-length-fact1 will take a station list and calculate the routes with the

minimum number of stations.

Figure 32: Rule to calculate min stations

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

25

The find-min-length-fact rule is used to take the line list and calculate routes with a minimum

number of line switches.

Figure 33: Rule to calculate min line switch

Now, to print the output of the route final_printer_diff will print the output for the case when start

and end stations are on different lines.

Figure 34: Rule to print output when different lines

Now, to print the output of the route final_printer_same will print the output for the case when

start and end stations are on the same line.

Figure 35: Rule to print output when same line

● Attractions: This has three more rules based on the option selected. When the user selects the

get information option it will again prompt 3 options as: Find Nearest Stations to Attraction,

Find Information on Attractions, and Find Attractions near a Station. If user selects option 1 it

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

26

will fire find_loc rule and based on the Attraction fact fetch details on nearest metro station to

the attraction entered by the user.

Figure 36: Rule to find metro station closest to the attraction

For option 2 it will fire the find_description rule and based on Attraction fact it will fetch the

description of the attraction entered by the user.

Figure 37: Rule to find attraction details

For option 3 it will fire the find_nearest_attraction_to_stations rule and based on the AttractionInfo

fact it will fetch the list of top 5 attractions near the entered metro station.

Figure 38: Rule to find closest attractions near metro station

● Line Details: This has one rule based on the option selected. When the user selects the get

information option and then selects option 5 (get line details) from the sub-menu fire

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

27

find_line_details rule and based on the lineDetails fact fetch details on all the stations and

transfer stations on the given line.

Figure 39: Rule to find closest attractions near metro station

● Closed Stations: This rule has been created to identify all those routes that contain closure

stations and revoke then so that the final output to the user is not a route that includes any

closed stations. This rule takes as input, the asserted routes and invokes the function found-

closure which checks for the existence of out of service stations and if such a route is

identified, it is revoked. The rule is shown in the s screenshot below -

Figure 40: Rule to find alternate routes in case of closed stations

● Error in Input: This rule handles the case where either, the name entered by the user

corresponds to no station in the facts of the exert system or no available route between the

entered stations exist. A screenshot depicting the rule is shown below -

Figure 41: Rule to print put error message

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

28

● Looping to Main Menu: This rule ensures that after every query of the user is done executing,

the system loops back to the main menu instead of exiting. Usre input is asked and if the user

chooses to continue, the program loops back to the main menu, else the program is exited.

Figure 42: Rule to loop back to main menu given user input

● Miscelaneous Rules: In addition to the rules mentioned above, there are some additional ones

that aid in system utility. All of these rules handle the cases where the user input provided does

not correspond to a station, attraction, or line. Instead of the system simply exiting execution,

these rules ensure that a relevant error message is printed out and the user is asked if they

would like to loop back to the main menu.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

29

6. Supporting CLIPS Functions

● Functions: Apart from rules some functions have been implemented. They are as follows:

○ Calc_cost: This function calculates the cost of travel from one station to another in route

based on zone positioning.

Figure 43: Calculate cost function

○ Find_index: Calculates the position of station in the before and after list of another station

Figure 44: Find Index Function

○ Bsplice: Calculates the subset of stations from the before travel list that needs to be

traveled to get to the destination station.

Figure 45: Function to calculate the subset of stations from before travel list

○ Asplice: Calculates the subset of stations from the after travel list that needs to be traveled

to get to the destination station.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

30

Figure 46: Function to calculate the subset of stations from after travel list

○ Found-closure: This function is designed to, given a route that has been found between

user-input stations, check if that route has any of the specified station closures. If closures

exist, a flag variable is returned back to the calling rule which then revokes this rule.

Figure 47: Function to find the alternate route incase of closed station

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

31

7. Conclusions

In part-3 of the system development, we developed an interactive system which will give

information on routes and attractions in London while also bypassing and taking care of station

closures. After defining templates and populating facts based on information collected from

diverse sources, we designed and implemented rules for developing rule-based systems and

knowledge-based applications.

In conclusion, our use of CLIPS for the London Tube expert system successfully integrates

advanced rule-based systems and knowledge-based applications. Through systematic entity

identification and rule development, we've created a robust and practical platform. This application

highlights the efficiency of CLIPS in managing complex rule structures, demonstrating its

effectiveness in providing straightforward navigation and information retrieval within the London

Tube network.

Group No - 4 Artificial Intelligence: CSCI 6511 Project Part 3

32

8. References

[1] Wikipedia contributors. (2023, September). List of London Underground stations. Wikipedia.

URL: https://en.wikipedia.org/wiki/List_of_London_Underground_stations

[2] Transport for London. (2023, September). TfL API. URL: https://api.tfl.gov.uk/

[3] Google. (2023, September). Google Maps Geocoding API. URL:

https://developers.google.com/maps/documentation/geocoding/start

[4] Google. (2023, September). Google Maps Places API. URL:

https://developers.google.com/maps/documentation/places/web-service/overview

[5] CLIPS User Guide Chapter 2. (n.d.).

https://redirect.cs.umbc.edu/portal/clips/usersguide/ug2.html

[6] GeeksforGeeks. (2023, June 9). Breadth first search or BFS for a graph.

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph/

[7] Robinson, P. (n.d.). CLIPS Tutorial 1.

https://kcir.pwr.edu.pl/~witold/ai/CLIPS_tutorial/CLIPS_tutorial_1.html

[8] Chadha, H. (2023, November 7). BFS for London Tube Navigation System. Google

Colaboratory.

https://colab.research.google.com/drive/1a3qAhu9FnyhL9GJln70Z37V9KBcY0Cxz#scrollTo=-

pP8LE1BWJT5

https://kcir.pwr.edu.pl/~witold/ai/CLIPS_tutorial/CLIPS_tutorial_1.html

	1. Introduction
	2. Instructions for Running the Expert System
	3. Expert System Usage Examples
	4. Facts, Templates and Data Collection
	4.1. Data Collection
	4.2. Revisions in Templates and Facts in Part-3
	4.3. Templates in Clips
	4.4. Facts in Clips

	5. Design and Implementation of CLIPS Rules
	● Closed Stations: This rule has been created to identify all those routes that contain closure stations and revoke then so that the final output to the user is not a route that includes any closed stations. This rule takes as input, the asserted rout...
	6. Supporting CLIPS Functions
	7. Conclusions
	8. References

